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Exact expressions for the internal and external Froude numbers for two-layer flows 
are derived from the celerities of infinitesimal long internal and external waves, 
without recourse to the Boussinesq approximation. These expressions are functions 
of the relative density difference between the layers; the relative thickness of the 
layers ; and the stability Froude number, which can be regarded as an inverse bulk 
Richardson number. A fourth Froude number, the composite Froude number, has 
been most often used in previous studies. However, the usefulness of the composite 
Froude number is shown to diminish as the stability Froude number increases. The 
potential confusion associated with having four Froude numbers of importance has 
been alleviated by deriving an equation interrelating them. This equation facilitates 
a comprehensive understanding of the hydraulics of two-layer flows. 

It is demonstrated that in substantial portions of some flows (both Boussinesq and 
non-Boussinesq exchange flow through a contraction are presented as examples), the 
stability Froude number exceeds a critical value. In this case hydraulic analysis 
yields imaginary phase speeds corresponding to the instability of long internal 
waves. Various implications of this result are discussed. 

1. Introduction 
Many flows of oceanographic, meteorological, and engineering importance can be 

modelled as homogeneous layers of inviscid fluid subject to a hydrostatic pressure 
distribution. The resulting one-dimensional (hydraulic) equations are used ex- 
tensively in the study of single-layer, open channel flows, see Henderson (1966). The 
extension to multi-layer flows has been pursued since the early 1950s in studies 
concerned with the intrusion of salt water into estuaries and rivers (Stommel & 
Farmer 1953; Schijf & Schonfeld 1953), and with the flow of air over mountains 
(Benton 1954; Long 1954). More recently, interest in the hydraulics of layered flows 
has grown rapidly, resulting in the development of a general formulation by 
Houghton & Isaacson (1970), Baines (1984), and Armi (1986). An impressive recent 
application is a model of the exchange of Mediterranean and Atlantic water through 
the Strait of Gibraltar by Armi & Farmer (1986, 1989) and Farmer & Armi (1986, 
1989). 

Nevertheless, there are still many aspects of the hydraulics of layered flows that 
require further investigation. This paper will address three interrelated issues : (i) the 
relaxation of the Boussinesq approximation, that the relative density difference 
between the layers is small; (ii) the derivation and use of appropriate Froude 
numbers to characterize layered flows; and (iii) flows where the hydraulic equations 
yield imaginary phase speeds for long internal waves. The primary focus will be on 



458 G .  A .  Lawrence 

steady two-layer flows; but, the results can, in principle, be extended to any number 
of layers. 

The characteristic velocities (celerities) of long waves, of infinitesimal amplitude, 
both on the free surface, and on the interface, can be determined from the one- 
dimensional equations. The celerity of a long wave is the sum of a convective velocity 
and a phase speed. The Froude number is generally defined as the ratio of the 
convective velocity to the phase speed. An alternative, see Armi (1986), is to define 
the Froude number in terms of conditions a t  special locations, traditionally called 
‘hydraulic controls ’. For single-layer flow there is no difficulty, since both definitions 
yield the same Froude number. However, different Froude numbers result when 
these definitions are applied to two-layer flow. The present paper seeks to remove the 
possibility of confusion by discussing the significance of these Froude numbers, and 
deriving the fundamental equation interrelating them. Both unidirectional and 
exchange flow through a contraction are analysed to illustrate this interrelationship. 

The celerity of long internal waves in a two-layer flow was determined by Stokes 
(1847, see Gill 1982, p. 121) for the special case of equal velocity in each layer. The 
solution for both external and internal waves in a flow satisfying the Boussinesq 
approximation was given by Schijf & Schonfeld (1953). This solution is often 
accurate even when the relative density difference is not small. However, it will be 
shown that there are also situations where the non-Boussinesq solution is required no 
matter how small the relative density difference. A quartic equation must be solved 
to obtain the non-Boussinesq long-wave celerities. Even though the general solution 
for quartic equations is algebraically complex, and is therefore rarely used in favour 
of a numerical solution, it will be used in the present paper, since it facilitates a more 
complete understanding the hydraulics of two-layer flows. 

Armi & Farmer’s (1986) analysis of Boussinesq exchange flow through a 
contraction is extended to show that in a significant portion of the flow the celerities 
are imaginary, corresponding to the instability of long waves (Long 1956). On the 
basis of conditions a t  the narrowest section Armi & Farmer (1986) incorrectly 
concluded that instability does not occur. They did not check the stability on either 
side of the narrowest section. It is shown in the present paper, that in both 
Boussinesq and non-Boussinesq exchange flow through a contraction imaginary 
solutions may occur to one side of the narrowest section, but not at the narrowest 
section. 

The hydraulics of layered flows is reviewed in $2. The fundamental equation 
interrelating the Froude numbers relevant to two-layer flows is derived in $3, and 
illustrated using unidirectional two-layer flow through a contraction as an example. 
Boussinesq and non-Boussinesq exchange flows through a contraction are analysed 
in $4. The results are summarized in $5.  

2. Review of the hydraulics of layered flows 
Three assumptions, known as the hydraulic assumptions, are used in the study of 

layered flows. They are : (i) the fluids are inviscid ; (ii) the pressure is hydrostatic ; and 
(iii) within each layer the density is constant and the velocity varies only in the flow 
direction. Armi (1975, 1986) presents the hydraulic equations in the general form : 
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FIGURE 1 .  (a )  Plan view for flow through a contraction, and side views for ( b )  single-layer flow, 
and (c) a two-layer exchange flow. 

where x is the horizontal coordinate and t is time. In general the variables on the left- 
hand side of (1) are unknown, and the variables on the right-hand side are known. 
If the flow has j layers : v is a vector with 2 j  elements ; f is a vector with 2 elements ; 
C is a 2 j  x 2j  matrix ; and D is an 2 x 2j matrix. Armi (1986) shows that for single- 
laver flow 

and for two-layer flow with a free surface: 

where u,, h,, p,, and Q, are the velocity, thickness, density, and volumetric flow rate 
of layer n, as indicated on figure 1, and g is the gravitational acceleration. Subscript 
1 refers to the upper layer, and subscript 2 refers to the lower layer; for single-layer 
flow no subscripts are used. The variations in bottom elevation and channel width 
are h,(z) and b(x) respectively. For the examples considered in the present paper only 
variations in width will be considered, so that h,(z) = 0. The relative density 
difference B = (p2-p1) /p2 .  If 8 < 1, the flow is said to be Boussinesq. For the pressure 
to be hydrostatic the variations in channel width and depth must be gradual. 
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2.1. Characteristic velocities, Froude numbers, critical flow, and hydraulic controls 
As a consequence of the assumption of hydrostatic pressure, the hydraulic equations 
(1) have only long-wave solutions. The characteristic velocities (celerities), A,  of these 
long waves are specified by the eigenvalue equation : 

Det (C-A/) = 0, (4) 

A* = u,,,+c. (5 )  

where / is the identity matrix. The characteristic velocities are given by : 

The ratio of the convective velocity, u,,,, to the phase speed, c ,  is traditionally 
known as the Froude number. When the matrix C for single-layer flow (2) is 
substituted into the eigenvalue equation (4), (5) yields, u,,, = u,c = (gh);, and the 
Froude number 

This Froude number is analogous to the Mach number in gas flow. The flow is said 
to be supercritical, critical, or subcritical depending on whether F2 is greater than, 
equal to, or less than unity. It is customary to use F 2  rather than F ,  since it is F2 that 
appears in the solutions of the hydraulic equations, see (7)  below. If a device, such 
as a sluice gate or a weir, is used to control the flow in a channel, there is an abrupt 
change from subcritical flow upstream, to supercritical flow downstream, of the 
control device. So it is customary to call any location where a flow changes from 
subcritical to supercritical a hydraulic control, or simply, a control. This paper 
considers channels of gradually varying width in which the flow passes smoothly 
from subcritical to supercritical flow. In such channels the flow is always critical a t  
the point of control. 

The above principles have been applied to multi-layered flows by Benton (1954), 
and Baines (1988). The essential difference being that long waves can propagate 
along each interface as well as the free surface. Therefore, j Froude numbers based 
on the characteristic velocities can be defined for a j layered flow. However, even for 
two-layer flows these Froude numbers are not readily determined except in special 
cases. It is perhaps for this reason that Froude numbers based on characteristic 
velocities have not previously been used in studies of multi-layered flows. Instead 
Froude numbers have been defined in a variety of ways, many of which have been 
specific to particular experiments ; however, a second general method of defining 
Froude numbers arises from the steady solutions of the hydraulic equations. 

2.2. Steady solutions and the composite Froude number 
Consider the solution of the hydraulic equation (1) for the depth of steady single- 
layer flow through a contraction : 

1 dh - F2 1 db  
h d x  1-F2bdx '  (7) 

At points of hydraulic control F2 = 1, so to avoid infinite convective accelerations, 
db/dx = 0. The requirement, db/dx = 0, determines the possible locations of 
hydraulic control. The requirement, F2 = 1, determines the depth of flow a t  a 
control, h, = (&/gb2)i .  In any flow there may be more than one possible control 
location. A classification scheme is often needed to identify, for any given set of 
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conditions, those locations that are acting as controls. Lawrence (1985, 1987) 
presents classification schemes for steady single- and two-layer flow over an obstacle. 

The steady solutions to the hydraulic equations (1) can be written in the general 
form : 

(8) 

where R = (Adj C)D(df/dx). Solutions exist if the matrix C is non-singular 
(Det C + 0), or, if at locations where the singularity condition, Det C = 0, is satisfied, 
the regularity condition, R = 0, is also satisfied. If Det C = 0, then from the eigenvalue 
equation (4) h = 0,  so that locations where the singularity condition is satisfied must 
also be controls. At  controls the values of the dependent variables, represented by u, 
can be determined using the regularity conditions (db/dx = 0, in the above example), 
and singularity conditions (F2 = 1, in the above example). Once u is known at  a 
control the steady solutions (8) can be used directly, but is generally integrated to 
give an energy (Bernoulli) equation for each layer. For two-layer flow: 

do R 
dx DetC’ 
-=- 

U 2  
H ,  = h,+h,+h,+’, 

29 

(9b) 
U2 

H 2  = ( 1  -e)hl  +h2+h,+3, 
29 

where the reduced gravitational acceleration, g’ = sg. To emphasize the internal 
dynamics it is most convenient? to define an energy difference, AH = ( H , - H , ) / s ,  
1.e. : 

(10) 

Equations (9) and (10) are used to obtain the solutions presented in $3 and $4. 
Applying the general solution (8) to steady, two-layer flow through a contraction 

yields : 

AH = h, + (u; - ~:)/2g‘.  

(11)  

In this case the singularity condition is G2 = 1, where Armi (1986) defines the 
composite Froude number : 

G2 F;+Fi-EF;Fi, (12a) 

where F t  = u2,/g’h,, (12b) 
are the densimetric Froude numbers of the individual layers. From (11)  we see that 
if G2 = 1, hydraulic control may be achieved in two ways : either db/dx = 0,  (in this 
case the term topographic control will be used) ; or 

in this case the term virtual control is used, following Wood (1968). 

t Various authors (see Lawrence 1985; Armi 1986; Denton 1987) have used 

AH = h, + h, + {u; - (1 - E) 4 } / 2 g ’ ,  

which is an alternative to (lo), but more cumbersome to use in the study of non-Boussinesq flows. 



462 G. A .  Lawrence 

The composite Froude number G2 may determine the criticality of two-layer flow 
just as the parameter F2 determines the criticality of single-layer flow. However, a 
two-layer flow supports both internal and external waves with different, characteristic 
velocities. It is not immediately obvious how the single parameter, G2, can determine 
the criticality of two-layer flows, since i t  cannot be the ratio of convective velocity 
to phase speed for both internal and external waves. This dilemma is resolved in the 
following section by deriving the equation relating the Froude numbers based on the 
characteristic velocities to the composite Froude number. 

3. Two-layer Froude numbers and the relationship between them 
The characteristic velocities from which Froude numbers are derived are the 

solutions to the eigenvalue equation (4). In  a two-layer system they can be written 
as : 

A i  = u E & C E ,  (14a) 

A; = UI+C1. (14b) 

The external characteristic velocities, h i ,  correspond to external (free surface) wave 
motions ; and the internal characteristic velocities, A:, correspond to internal 
(interfacial) wave motions. The convective velocities, uE and uI, and the phase 
velocities, cE and cI, are given by: 

where 5 = sgn (u2-u1), and the arithmetic mean velocity fi = t(u, +us). zl, z2 and z3 
are the roots of a cubic derived from the quartic equation specified by the eigenvalue 
equation (4). The details are given in the Appendix. 

Whether the internal phase speed given in (15 6 )  is real or not depends on the value 
of the stability Froude number: 

where h = h, + h,, is the total depth of flow. Imaginary internal phase speeds result 
when the stability Froude number exceeds a critical value, (F&rit. The variation of 
(F&.it as a function of both E and a = 4h, h2/h2 is plotted in figure 2. In  all cases 
1 < < 2 ; and for Boussinesq flows (F;),,,, M 1 (for the remainder of this paper 
the symbol x will be used to indicate that the Boussinesq approximation has been 
made). The requirement that Fi < (Fi)crit for the stability of long waves will be 
referred to as Long's stability criterion, after Long (1956). 

Dividing convective velocities by phase speeds given in (15) yields : 

A glance a t  Appendix 1 reveals that  it is not a simple matter to  evaluate these Froude 
numbers exactly. However, in many cases the Boussinesq approximations presented 
below are sufficiently accurate, an exception is discussed in 94. 
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FIQURE 2. The maximum value of the stability Froude number, (F;),,,,, as a function of the 
relative density difference, E ,  for a = 0.25, 0.5, and 1.0, where a = 44,h,/h2. 

3.1. Boussinesq approximations 
Expanding the expressions for zl, z2 and zg derived in the Appendix in powers of E 

gives 1 

z1 = &h{e( 1 -a) F i  + 0 ( c 2 ) } ,  

z2 = bh{l -  (€a(l -Fi))i++aFi+ O ( i ) > ,  

z3 = $h{ (1 + (€a( 1 -fli))j + $df + O(d)}. 

(18a) 

(18b) 

(184  

Substituting into the expressions for the convective velocities and phase speeds (15) 
yields the Boussinesq results of Schijf & Schonfeld (1953), i.e. : 

Dividing the internal convective velocity by the internal phase speed, Lawrence 
(1985) obtained the internal Froude number : 

FI x 
u1 h, + u2 hl 

(g’hh, h,(l -Fi))i’ 

and after some rearrangement, 

The external Froude number is: 
.ii x- 

FE (gh);’  
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where the flow weighted mean velocity .ii: = (u, h, + u, h,) /h .  The external Froude 
number for Boussinesq two-layer flows is the same as the Froude number for single- 
layer flows. This is as we would expect (see Armi 1986), since if the density difference 
between the layers is small, a long free surface wave should behave as if the fluid 
were of uniform density. It is demonstrated in $4.2 that the Froude number for 
non-Boussinesq two-layer flows is not equal to the single-layer Froude number, see 
figure 11. 

A further simplification to the Boussinesq solution is to consider : either, flows with 
u, $ u2, and h, 4 h,, so that F: $ F i ;  or, flows with u1 4 up, and h, $ h,, so that 
F t  4 Fi.  I n  both cases F i  + 1, and the expression for the internal Froude number 
(20b)  simplifies to 

which is the anticipated, and the frequently used, result (see Turner 1973, $3.2). The 
layer with the much higher Froude number is called the active layer ; the other layer 
is called the passive layer, and its dynamics can be ignored, see Armi (1986). This case 
emphasizes the need to distinguish between the two convective velocities uE and uI. 
If uI were equal to  uE we would obtain an internal Froude number which would 
depend, unrealistically, on conditions in the passive layer. 

F,2 x Fi, (22 )  

3 .2 .  Unidirectional two-layer flow through a contraction 
The results of the analysis of steady, unidirectional, two-layer flow through a 
contraction will be used to illustrate the above results. The exact nature of the flow 
is dependent on : the relative density difference, E ;  the flow rate ratio, qr = ql/qe; and 
the width of the contraction, b ( x ) .  The solution for the case where E = 0.5, q, = 1, and 
b*(x) = b(z ) /b (O)  = 1 +x, is presented in figure 3. A plan view of the contraction is 
given in figure 3 (a ) .  The exact solutions for the interface and free surface elevations 
are plotted in figure 3 ( b ) ,  and the exact solutions for G 2 ( x ) ,  Ft (x ) ,  F&(x)  and Fi(z)  are 
plotted in figure 3 ( c ) .  Although a large value of E was chosen for the sake of clarity 
in the plots, the variations are qualitatively the same for all values of E and qr. They 
are : 

(i) FL, increases monotonically from zero far upstream to unity a t  the exit ; 
(ii) F,2, increases monotonically from zero far upstream, to unity at the internal 

control, located where 

to a value of x 4/s a t  the exit ; 
(iii) F i ,  also increases monotonically in the flow direction, to a maximum 

(iv) G2 increases from zero far upstream, to a value of unity a t  the internal control, 
to a maximum value of x l/s just upstream of the exit, and then plunges to a value 
of unity a t  the external control. This variation can only be fully understood once the 
relationship between the various Froude numbers is known, see $3.3. 

Some of the above results are also conveniently represented in figure 3 ( d )  using the 
Froude number plane used by Benton (1954) and Armi (1986). The flow proceeds 
from the origin of the Froude number plane, along a straight line of slope l/u: that 
cuts the curve F,2 = G2 = 1 (at a point corresponding to the virtual control), and 
intersects the line FL = G2 = 1 (at a point corresponding to the exit control). The 
variation of the velocity ratio u, with s for various values of q, is plotted in figure 4. 

W+E[Qr/1 +qrI” 
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FIGURE 3. Exact solution for unidirectional flow through a contraction with the flow rate ratio, 
qr = 1, the relative density difference, E = 0.5, and the width ratio, b* = b(z)/b(O) = 1 + x .  (a) Plan 
view of the contraction. (b) Variation of the free surface and interface elevations expressed relative 
to, the critical depth at the exit, h,, = [(Q1+QZ)*/gb(0)*]~. (c) Variation of F:, F:, F i  and G%. (d)  
Representation of the flow on the Froude number plane. 
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FIGURE 4. Variation of the velocity ratio u, = u,/u,, as a function ’of the relative density 
difference, B ,  for various values of the flow rate ratio, qr = QJQ,. 

It follows from the solutions for steady unidirectional two-layer flow through a 
contraction (( 1 1 )  and (13)) that for fixed qr and E ,  the velocity ratio u, is constant. 

3.3. Fundamental relationship between Froude numbers 
Since the determinant of a matrix is the product of its eigenvalues, we can write 
Det C = A; A: A; A;. In  addition, taking the determinant of the matrix C for two-layer 
flows (3), and applying the definition of G2 (equation (12a)), gives Det C = eg2h, h, 
(1 -G2). Equating these two expressions for Det C, and using the equation for the 
characteristic velocities (5 ) ,  gives : 

(23) ( 1  -G2)  x k(1  -FL) (1 -F;) ,  

where k = c; c?,Jeg2h, h, z 1 -F i .  Equation (23) is the fundamental relationship 
between the Froude numbers relevant to two-layer flows. If k > 0, (23) tells us that 
a t  a control location (i.e. where G2 = l),  the flow may be internally critical, F,2 = 1, 
or externally critical, F& = 1 ,  and Armi’s (1986) introduction of the term composite 
Froude number is most appropriate. However, in the absence of any other 
information, the value of the composite Froude number only gives us a limited 
appreciation of the nature of the flow. All we can say is that:  

(i) if G2 > 1, then the flow may be stable, internally supercritical, and externally 
subcritical ; or it may be unstable, since if 

c F < O ,  then k<O,FF<O,  and G2> 1. 

Some unstable flows are considered in $4; 
(ii) if G2 = 1, then the flow is either internally critical, externally critical, or 

marginally stable ; 
(iii) if G2 < 1, then the flow is either both externally subcritical and internally 

subcritical, or both externally supercritical and internally supercritical. Note that in 
the later case G2 may even take on negative values. 

Often more information is available than just the value of G2, and any ambiguities 
as to the criticality of the flow can be resolved. For instance in unidirectional flow 
through a contraction k w 1, so we can write: 

(1 -G2)  x ( l - F $ ) ( l - F ; ) .  (24) 
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This relationship is shown in figure 3 (e) .  Knowledge of the value of G2 is sufficient to 
determine the criticality of the flow since F i  < 1 throughout the contraction. When 
the flow is internally supercritical, 1 < G2 < F;,  and when the flow is internally 
subcritical, Ff < G2 < 1, as can be seen in figure 3(c).  In many other flows of interest, 
e.g. exchange flow through a contraction and two-layer-flow over an obstacle, 
FL x 0, and 

( l - G 2 )  x (l-Fi)(l-F;), (25) 

giving 

and again G2 correctly specifies the criticality of the flow. 
Although G2 often determines the criticality of the flow, there are situations where 

this knowledge is insufficient. For example, we cannot use G2 to describe the 
behaviour of the oblique standing waves that can form in supercritical layered flow, 
as seen in space shuttle photographs of Gibraltar Strait, see Farmer & Armi (1986, 
figure 20). These oblique waves are analogous to those found in single-layer flows 
(Henderson 1966, pp. 239-250), and to Mach waves found in gas flow (Prandtll952, 
pp. 275-277). A situation where the determination of the Mach angle is of importance 
is illustrated in the experiments of Lawrence (1985). In  these experiments, two-layer 
flows over an obstacle with internally supercritical flow downstream of the crest were 
produced. Shear instabilities that form on the interface generate in considerable 
mixing between the layers. These instabilities are strongest in a region bounded by 
the sidewalls and oblique (Mach) waves that form a t  an angle to the sidewalls. The 
angle that they make with the sidewalls is given by arcsin ( l/FI). Thus, FI is needed 
for the prediction of mixing, and the value of G2 is of little relevance. 

4. Exchange flow through a contraction 
Unidirectional flow through a contraction was chosen for analysis in $3, since it 

illustrates the relationship between the internal, external, and composite Froude 
numbers, as well as some of the consequences of relaxing the Boussinesq 
approximation. However, the significance of the stability Froude number was not 
discussed, since it is only of O(B)  in unidirectional flow through a contraction. The 
significance of F i ,  and the possibility, and consequences, of attaining values in 
violation of Long’s stability criterion, in both Boussinesq and non-Boussinesq flows, 
will now be investigated. The following non-dimensional quantities are used : 

where H ,  is the Bernoulli constant for the upper layer, see ( 9 a ) ,  and b, is the 
minimum width of the contraction. The subscript 0 is used to indicate conditions at 
the narrowest section (throat) of the contraction. Substituting the definitions given 
in (26) into the definition of the stability Froude number (16) gives: 

where the relative width of the channel b* = b/b,. By convention, flows from left-to- 
right are positive, so for the example given in figure 1 (c), Q2 and u2 are negative. The 
flow rate ratio qr = 1 Q , 1 / 1 Q 2 1 .  

Two further equations are needed to specify the variation in free surface and 
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interface heights. The first is the dimensionless Bernoulli equation for the upper 
layer : 

y 1 + y 2 + + 5 u y  = 1 .  

The second is the dimensionless energy difference between the layers : 

AH* E AH/Hl = Y ~ + ~ ( u T ~ - u ~ ~ ) .  (29) 

From this point on the * superscripts will be dropped. 
Boussinesq exchange flow through a contraction has already been studied in some 

detail by Armi & Farmer (1986, hereinafter referred to as AF). Only maximal 
exchange flows; i.e. flows with both a topographic control (located at  the throat), and 
a virtual control (located in the vicinity of, but not necessarily at ,  the throat), will 
be considered. AF showed that for all values of qr Long’s stability criterion is satisfied 
at  the throat of the contraction, but they did not present results for any other 
sections. AF’s analysis will first be extended to provide a complete description of 
Boussinesq flows at  all sections of the contraction. Although AF resorted to 
numerical solutions, this is not essential in Boussinesq flows, and algebraic 
expressions for all the parameters of interest are derived below. The analysis will 
then be extended to obtain solutions for the case of non-Boussinesq flows. 

4.1. Boussinesq exchange jow through a contraction 

The variation of F i  is best illustrated using the Froude number plane. This involves 
expressing F i  in terms of F: and Fi .  For Boussinesq flows with a negligible free- 
surface deflection 

Y l + Y 2  x 1, (30) 

which together with the definition of the densimetric Froude numbers (12 b ) ,  yields : 

Contours of F i  are plotted on the Froude number plane for yr = 1 in figure 5.  Two 
aspects of these plots need to be emphasized: 

(i) There are significant portions of the Froude number plane where Long’s 
stability criterion is violated. 

(ii) For qr = 1,  the fact that Long’s stability criterion is only violated when 
G2 > 1,  is shown in figure 5 .  This result is seen to apply for all values of pr by expanding 
F i  and G2 in terms of qr, y1 and y2  to obtain: 

So F i  < G2 no matter what the values of qr, y 1  and y 2 .  This result indicates that all 
internally subcritical flows satisfy Long’s stability criterion. 

The possibility of exchange flow violating Long’s stability criterion will now be 
investigated. AF show that if qr is respectively less than, equal to, or greater than 
unity, then there is a virtual control downstream of, at, or upstream of, the throat. 
At  the virtual control : 

UIV = -Uzv, (33) 

and Affv x q r / ( 1  + ~ r ) .  (34) 
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F: 

FIGURE 5. Contours of F i  in the Froude number plane for Boussinesq exchange 
flows with qr = I .  

The subscript v is used to indicate conditions a t  the virtual control. AF assume that 
AH is conserved in the region of flow between any internal hydraulic jumps that may 
occur, as indicated in figure 1 ( c ) .  I n  this region, which must include both the virtual 
and topographic controls, AH = AH,. Substituting (33) and (34) into the definition 

(35) 
2 ( Y ,  Y 2 ) l  

of AH (29), yields : 2 {?I !z (~+q&Y,+qry,f’  

Assum.ing no free-surface deflection, and substituting (35) into the expression for F i  
(27) gives: 

The variation of F i  with y 2  for various values of qr is plotted in figure 6. Note that, 
if qr = 1 the flow is marginally stable (Fi = 1)  throughout. If qr + 1 a moderately 
barotropic flow attains marginal stability when y 2  x 0.5, and becomes unstable when 
the layer with the higher flow rate becomes the thinner of the two layers. The overall 
limiting value of F i  x 2, as can be inferred from figure 6. 

For a more complete understanding of exchange flow through a contraction it is 
important to determine the thickness of the layers, and the width of the channel, at 
three locations : 

(i) at the virtual control ( y 2 ,  and b,) ; 
(ii) a t  the position where the flow is marginally stable ( y Z m  and b,); 
(iii) a t  the throat (yzo and bo). 

Only two of the above heights and widths are constants: b, = 1 by definition; and 
ye, = 0.5, see the expression for Fi (equation (36)) and figure 6. The condition that 
the layer velocities are equal in magnitude (equation (33)), gives yzv w 1/(1 +q,). The 
remaining variables, yz0 and b,, have previously been evaluated numerically, see 
figure 5 in AF. The derivation of algebraic expressions for yz0 ,  b,, and b, is presented 
below for the first time. 

The height of the interface a t  the throat is determined by using the fact that b has 
a minimum value at the throat, in conjunction with the expression for q2/b (equation 
(35)), to obtain: 

3(qr- 1 )  Y ~ o  4- (5-qr)  Y z o - ~  0. (37) 
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FIGURE 6. Variation of F i  with the dimensionless interface height y2 for exchange flow through 
a constriction. 

Solving (37) for qr = 1 gives yzo x 0.5. Recall that in addition if qr = 1, then yZv x 
yzm x 0.5, so that the flow is both critical and marginally stable a t  the throat, as noted 
by AF. Solving (37) for q, + 1 gives: 

and 

where 

(39) 

An expression for the width of the constriction, obtained from the expression for qz /b  
(equation (35)), and (38), is: 

Y l + Q r Y z  b2 = y 
( Y 1 Y J 2  . 

The above results are illustrated in figure 7 for an exchange flow with qr = 5 and 
b = exp (2). A plan of the constriction is given in figure 7 ( a ) ,  and an elevation 
showing the variation of interface height in figure 7 ( b ) .  The three heights yzv, yz0, and 
yzm are plotted showing that the virtual control and the point of marginal stability 
occur on opposite sides of the constriction. The virtual control is on the side where 
the slower moving layer is thinner. 

The variations of F i ,  G2, and F,2 plotted in figure 7 ( c )  satisfy the fundamental 
relationship for Boussinesq flows with negligible free-surface deflection (equation 
(24)). To the left of the virtual control the flow is supercritical with a passive upper 
layer. Between the virtual control and the throat the flow is subcritical. Note that 
the internal Froude number drops to zero at the point where the internal convective 
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FIQURE 7. Boussinesq exchange flow through a contraction with qr = 5 and b = exp (2). (a) Plan 
view of the constriction. (b) Plot of the variation of interface height. (e) Plot of the variations of 
F:, F i  and 8. (d)  Representation of the flow on the Froude number plane. The flow follows the line 
of constant dimensionless energy difference between the lagers, AH = 1/( 1 +q,) = t .  
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FIGURE 8. Plot of the variation with q, of the widths and interface heights a t  the virtual 
control, the point of marginal stability, and the throat. 

velocity, see (19b), equals zero, which for qr = 5 corresponds to y2 = l /( l  + d5). TO 
the left of this point the internal convective velocity is negative, and to the right it 
is positive. Between the throat and the point of marginal stability the flow is 
internally supercritical. To the right of the point of marginal stability Long's 
stability criterion is violated and the validity of hydraulic analysis in this region 
must be questioned. In  this region F: < 0, corresponding to imaginary convective 
velocities. Some of the above features are also represented on the Froude number 
plane given in figure 7 ( d ) .  

Substituting yzv and yzm into equation (40) gives expressions for the width at  the 
virtual control and a t  the point of marginal stability ; i.e. : 

b& x 8y( 1 + qr) .  (41 b )  
These variations are plotted on figure 8 together with the variations of yBvr yz0 ,  and 
gBm. The most important new result is the fact' that b ,  < b, which ensures the 
presence of a region of unstable flow unless the constriction is highly asymmetric. For 
very large and very small values of qr the width at the virtual control approaches 
infinity whereas the width at the point of marginal stability approaches a finite 
value : 

So the width of the contraction at  the point of marginal stability is always less than 
9% greater than the width at the throat. Therefore significant regions of unstable 
flow can be expected in exchange flow through contractions. 

(42 )  (bm),ax x 

4.2.  Non-Boussinesq maximal exchange flows 

The same procedure used in the analysis of Boussinesq flows is followed in the 
analysis of non-Boussinesq flows. However, simple algebraic solutions, such as those 
given above do not generally exist for non-Boussinesq flows. Figure 9 corresponds to 
the flow given in figure 7 except that e = 0.5. Two flows are qualitatively the same. 
There is a topographic control a t  the throat, an upstream virtual control, and a point 
of marginal stability downstream of the throat. The non-Boussinesq flow differs in 
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FIQURE 9. Non-Boussinesq exchange flow through a contraction with E = 0.5, qr = 
exp (2). (a )  Plan view of the constriction. (b )  Plot of the variation of interface height. (c) 
variations of F:, F i  and Q2.  

5 and b = 
Plot of the 

that the free surface drops as the upper layer accelerates, the points of virtual control 
and marginal stability are closer to the throat, and the shear Froude number at the 
point of marginal stability (Fi)m > 1, in accordance with the results presented in 
figure 2. Further calculations show that as increases the virtual control continues 
to move downstream and eventually passes through the throat. The point of 
marginal stability remains to the right of the virtual control. 

It is of most interest to consider the situation where the virtual and topographic 
controls coincide a t  the throat. In this case, the flow a t  the throat must satisfy the 
regularity condition (9), the Bernoulli equation for the upper layer (28), and it must 
be internally critical. The solution is remarkably simple: i.e. a t  the throat F: = F i ,  
which leads to a series of useful results. Firstly the two controls will coincide if, and 
only if, 

(43) 
This result is not surprising if we consider that as E increases the ratio of the kinetic 

energy of the upper layer to that of the lower layer decreases, so that a higher qr is 

q* = (1 -qf. 
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FIGURE 10. The variation with E of qr, y, yl, and yz at the throat in flows where the 
two controls coincide. 
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required to keep the virtual control in the same position. The variation of qr, and of 
yl, yz, and y a t  the throat are plotted in figure 10. The layer thicknesses a t  the throat 
are given by: 

As c+  1 the lower-layer thickness yz-+O, yl+& and the flow behaves as if it were 
single layered, as we would expect from a comparison of the general matrix 
representations of single and two-layer flow (2) and (3). 

The variations in the exact values of Fk and FF when the two controls coincide are 
plotted in figure 1 1 .  The Boussinesq approximation for F i ,  given by (21), behaves as 
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we would expect ; it begins to diverge from the exact value as c increases. However, 
the Boussinesq approximation for F:, given by (20), always gives negative values, 
even though the exact (non-Boussinesq) solution is F i  = 1 for all values of E .  So 
irrespective of the value of E we need to use the non-Boussinesq solutions. This result 
is explainable in terms of the variation of F i  and (Fi),,,,. If 0 < E < 1,  then 1 < F i  < 
(Fi)crit, so although the flow is stable, the Boussinesq approximation for Ft (equation 
( 2 0 b ) )  gives negative values, corresponding to an unstable flow. 

4.3. Discussion 

To fully appreciate the above results it must be remembered that Long’s criterion is 
based on the assumption of a hydrostatic pressure distribution. Long (1956), himself, 
notes : ‘ If we abandon the hydrostatic assumption momentarily, we find that 
sufficiently short infinitesimal waves are unstable for any shear.’ Even at  values of 
F i  < 1 the interface is unstable to a number of short-wave instabilities (Thorpe 
1987), the most notable being the Kelvin-Helmholtz instability. If the initial 
thickness of the density interface is sufficiently small, Kelvin-Helmholtz billows will 
form on the interface. These billows may become unstable to a subharmonic wave 
that causes alternate billows to pair. As this pairing proceeds smaller scale three- 
dimensional instabilities result in mixing at  a molecular level. Pairing will continue 
until the billows becomes so large that the shear is no longer strong enough to 
overcome the buoyancy forces resisting pairing. At this stage Koop & Browand 
(1979) observed a collapse of the mixing layer leaving a density interface of thickness 

6 = Jcrit Fi h, (45) 

where the critical bulk Richardson number, Jcrit = g‘S/Au2. The value of Jcrit is about 
0.3, but may depend on a number of factors including : the definition of 6; the shape 
of the velocity and density profiles; and the Reynolds and Prandtl numbers. This 
result is supported by the theoretical work of Miles (1961), Howard (1961) and Corcos 
& Sherman (1976); the numerical work of Hazel (1972); and experimental work of 
Thorpe (1973) and Lawrence (1985). 

The thickness of the density interface given by (45) cannot be attained unless the 
flow is sufficiently deep. The constraining effect of the depth on the stability of a 
stratified shear flow has been investigated numerically by Hazel (1972). He solved 
the Taylor-Goldstein equation for the case of ‘ tanh ’ velocity and density profiles ; 
i.e. assuming u = 8(ul +u2) +$Au tanh (22/6), and p = $(p, +p2)  +!jAp tanh (22/6), 
where -gh < z < gh, and the ‘vorticity’ thickness 6 = Au/(du/dz),,,. Data from 
figure 3 of Hazel (1972) has been used to plot figure 12. When 6/h = 0, (F&rit = 1, 
in accordance with Long’s (1956) stability criterion, but (Qcrit increases as 6/h  
increases. 

Errors introduced into the hydraulic analysis owing to the presence of an interface 
of finite thickness may be reduced by the introduction of integral correction factors 
similar to those used in the hydraulic analysis of single-layer flows, see Wood (1970). 
The question that arises is now large a value of 6/h can be accommodated within the 
framework of hydraulic analysis ? Hazel (1972) notes that the flow ceases to resemble 
a two-layer system when 6/h is about 0.37, tending towards a flow with uniform 
shear and linear density. This is close to the point (6/h x 0.4;Fi x 1.6), that, 
according to figure 12, long waves become the most unstable waves. Thus, from two 
perspectives we cannot expect hydraulic analysis to accurately model the flow 
considered by Hazel (1972) when F i  > 1.6. 

16 FLM 216 
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FIGURE 12. Stability diagram for flows with tanh velocity and density profiles. Computed from 
(Hazel 1972, figure 3). (a) All wavelengths are stable; ( b )  long waves are stable, but some short 
waves are unstable; and (c) long waves are unstable, and some short waves are unstable. -----, 
envelope of stability curves for waves of finite length, corresponding to J,,,, = 0.25; -, stability 
boundary for long waves. 

This restriction still does not preclude the possibility of modelling exchange flows 
entirely; since, although Fi may approach a value of 2 ,  this only occurs when one 
layer is considerably thinner than the other, see figure 6. Figure 12 only applies for 
the case of equal layer thicknesses. Further results of Hazel (1972, figure 10) indicate 
that asymmetric flows are more stable than symmetric flows. In  addition, Hazel 
showed that an unbounded flow with ‘error function’ profiles of velocity and density 
(as recommended by Scotti & Corcos 1972), was more stable than an unbounded flow 
with tanh profiles. So, it is still an open question as to whether hydraulic analysis can 
be used to effectively model exchange flow through a contraction. 

5. Conclusions 
The internal, external, stability, and composite Froude numbers are all of 

particular importance in the hydraulic analysis of both Boussinesq and non- 
Boussinesq two-layer flows. They are interrelated by the equation : 

(1-G2)  = k(l-B’k)(l-F;), (23) 

where k w 1 -F i .  This equation facilitates a comprehensive understanding of the 
hydraulics of both Boussinesq and non-Boussinesq two-layer flows. 

If Fi exceeds a critical value, which depends on the relative density difference 
between the layers, then Long’s (1956) criterion for the stability of long waves is 
violated. Care must be taken when using the composite Froude number, since it 
cannot identify flows that violate Long’s criterion. Both Boussinesq and non- 
Boussinesq exchange flows through a contraction violate Long’s criterion. However, 
the presence of velocity and density interfaces of finite thickness, owing to the action 
of Kelvin-Helmholtz instabilities, and in violation of the hydraulic assumptions, 
may render exchange flows stable to  long waves. It is not yet known whether 
hydraulic analysis can be modified to  accurately model flows with interfaces of finite 
thickness. This problem provides a worthwhile challenge, since i t  could aid in the 
prediction of mixing in many stratified shear flows. 
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Appendix. Exact derivation of the characteristic velocities of long waves 

waves are specified by the eigenvalue equation (4) : 
The characteristic velocities (celerities), A,  of both long internal and long external 

(A 1 )  Det (C-A/) = 0, 

where / is the identity matrix. Substituting for the matrix C given in (3) yields: 

4 

a,Am = 0, 
m-0 

where u0 = U :  U: - gh, U ;  -gh, U: + gg'h, h, = gg'h, h,( 1 - G2), 
U, = - 4 ~ , ~ , t Z + 2 g h i i ,  

a, = 4a2 + 2u, u2 - gh, 

a3 = --a, 
a4 = 1 ,  
- and u = i(ul + u,) ,  4 = (u, h, + u2 h, ) /h ,  with h = h, + h,. 

General solutions for quartic equations are given in many mathematical 
handbooks; the Descartes-Euler solution, see Korn & Korn (1968, p. 24), is used 
here. The first step is the substitution of h = y + a  into the quartic equation (A 2)  to 
obtain the reduced quartic equation : 

y4+dy2+ey+f  = 0, (A 3) 

where d = h h ( 2 + s F 3 ,  e = 2gh(zi-@), f =  (@)2 { 4 s ( a - F 3 + s 2 F ~ } ,  and a = 
4h, h,/h2. Note that if u1 = u,, then d = -gh, e = 0, and f = 4sa(&h)2, giving the 
equation solved by Stokes (1847, see Gill 1982, p. 121). The solutions are: 

(A 4 a )  

(A 4b) 

A& = a* ( b h (  1 + ( 1  -€a)"):, 

A; = a* ($h( 1 - ( 1  - €a);)):. 

These solutions are real since as < 1.  If ae 4 1 ,  then cE z (gh); and cI z (g'h,h,/h)f. 
If u1 =!= u, the four solutions of the reduced quartic equation (A 3) are: 

t6-2 
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where 5 = sgn (u2-ul), and z1,z,,z3 are the solutions of the normalized cubic 
resolvent of (A 3): 

z 3 + r z 2 + ~ z + t  = 0, (A 6) 

where 

and t = -&j2 = -~ (&7h)~( l -a )F i .  

The solutions of the normalized cubic resolvent (A 6) depend on the value of its 
discriminant 

where p = 33s - r 2 )  and q = $(2r3 - 9rs + 27t). The algebraic programming system 
REDUCE was used to determine that : 

where b, = 4, 

b,  = (27a- 12) F i -  9a, 

b, = 12Fi - lSaFi, 

b3 = -@I, 
p = a€{1+2€(2a-F~)+€~F~}. 

The value of D is dependent on the values of the three parameters, a,  6 ,  and F i .  
From basic physical considerations 0 < E < 1 , O  < a < 1, and F i  >, 0. The require- 
ment that D < 0 for the solutions to be real restricts the value of F i  to be less than 
or equal to a critical value (Fi)crit. The variation of (Fi)crit with E for a = 0.25, 0.5, 
and 1.0 is plotted in figure 2. 

If D < 0, then the roots of the normalized cubic resolvent (A 6) are: 

z, = 2ycos(44+@7~)-3 (n = 1,3), (A 9) 

where 

Finally, the exact solutions to the quartic equation (A 2) are 

where, 6 = sgn (u, - ul).  A similar set of solutions has been obtained independently 
by Artale & Levi (1988) in their study of the propagation of solitary waves. 

If D > 0, then z1 is real, and x 2  and z3 are complex conjugates, and the internal 
phase velocity, z i  -z ! ,  is imaginary, corresponding to the instability of long internal 
waves. 
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